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Cycle lengths and minimum degree of graphs

Chun-Hung Liu∗ Jie Ma†

Abstract

There has been extensive research on cycle lengths in graphs with large minimum degree.
In this paper, we obtain several new and tight results in this area. Let G be a graph
with minimum degree at least k + 1. We prove that if G is bipartite, then there are k
cycles in G whose lengths form an arithmetic progression with common difference two. For
general graph G, we show that G contains ⌊k/2⌋ cycles with consecutive even lengths and
k − 3 cycles whose lengths form an arithmetic progression with common difference one or
two. In addition, if G is 2-connected and non-bipartite, then G contains ⌊k/2⌋ cycles with
consecutive odd lengths.

Thomassen (1983) made two conjectures on cycle lengths modulo a fixed integer k:
(1) every graph with minimum degree at least k + 1 contains cycles of all even lengths
modulo k; (2) every 2-connected non-bipartite graph with minimum degree at least k + 1
contains cycles of all lengths modulo k. These two conjectures, if true, are best possible.
Our results confirm both conjectures when k is even. And when k is odd, we show that
minimum degree at least k+4 suffices. This improves all previous results in this direction.
Moreover, our results derive new upper bounds of the chromatic number in terms of the
longest sequence of cycles with consecutive (even or odd) lengths.

1 Introduction

The study of the distribution of cycle lengths is a fundamental area in modern graph theory,
which has led to numerous results in abundant subjects. A common practice is investigating
if certain graph properties, such as large average degree, large chromatic number, large con-
nectivity, or nice expansion properties, are sufficient to ensure the existence of cycles of some
particular lengths. In this article, all graphs are simple and we consider the distribution of
cycle lengths in graphs with large minimum degree, aiming to understand the relation between
cycle lengths and minimum degree in great depth.

One classical result in this direction is due to Dirac [11] in 1950s: every graph G with
n ≥ 3 vertices and with minimum degree at least n/2 contains a Hamilton cycle (i.e., a cycle
passing through all vertices of G). Since then, there has been extensive research to investigate
cycle lengths in graphs G with large minimum degree δ(G), where δ(G) desponds on |V (G)|.
To name a few, [1,3,7] are about the length of the longest cycle, [22] is about the existence of
cycles with specified lengths, and [4, 5, 17,21,29,30] are about the range of cycle lengths.
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However, it is more general if the minimum degree is independent with the number of
vertices. Dirac [11] proved that every 2-connected graph with n vertices and minimum degree k
contains a cycle of length at least min{n, 2k}. Voss and Zuluaga [36] generalized this by proving
that every 2-connected non-bipartite graph with n vertices and minimum degree k contains
an even cycle of length at least min{n, 2k} and an odd cycle of length at least min{n, 2k− 1}.
Bondy and Vince [6] solved a question of Erdős by proving that if all but at most two vertices
of G have degree at least three, then there are two cycles in G whose lengths differ by one or
two. Häggkvist and Scott [24] proved that every connected cubic graph other than K4 contains
two cycles whose lengths differ by two.

Bondy and Vince’s theorem was improved by several authors. Häggkvist and Scott [23]
proved that every graph with minimum degree Ω(k2) contains k cycles of consecutive even
lengths. Verstraëte [35] improved this quadratic bound to be linear by proving that every graph
with average degree at least 8k and even girth g contains (g/2− 1)k cycles of consecutive even
lengths. In [31], Sudakov and Verstraëte further pushed the number of lengths of the cycles to
be exponential: every graph with average degree 192(k+1) and girth g contains k⌊(g−1)/2⌋ cycles
of consecutive even lengths. Very recently, the second author [27] obtained an analogue for odd
cycle: every 2-connected non-bipartite graph with average degree 456k and girth g contains
k⌊(g−1)/2⌋ cycles of consecutive odd lengths. On the other hand, without considering the
parity of the cycles, Fan [19] obtained similar results with better minimum degree conditions
by proving the following result. Every graph G with minimum degree δ(G) ≥ 3k contains k+1
cycles C0, C1, ..., Ck such that |E(C0)| > k+1, |E(Ci)|−|E(Ci−1)| = 2 for all 1 ≤ i ≤ k−1 and
1 ≤ |E(Ck)|−|E(Ck−1)| ≤ 2, and furthermore, if δ(G) ≥ 3k+1, then |E(Ck)|−|E(Ck−1)| = 2.
In the same paper [19], he also resolved a problem of Bondy and Vince [6] by showing that
every 3-connected non-bipartite graph G with δ(G) ≥ 3k contains 2k cycles with consecutive
lengths m,m+ 1, ...,m + 2k − 1 for some integer m ≥ k + 2.

To better understand the above results, we remark that in order to ensure two or more
odd cycle lengths, 2-connectedness is necessary in addition to the non-bipartiteness. There
exist infinitely many non-bipartite connected graphs with arbitrary large minimum degree but
containing a unique odd cycle: for arbitrary t and odd s, let G be obtained from s disjoint
copies of Kt,t and an odd cycle Cs such that each Kt,t intersects Cs in exactly one vertex.

1.1 Paths and cycles of consecutive lengths

Throughout the rest of this paper, k is a fixed positive integer, unless otherwise specified. We
say that a sequence of paths or cycles H1,H2, ...,Hk satisfies the length condition if |E(H1)| ≥ 2
and |E(Hi+1)| − |E(Hi)| = 2 for 1 ≤ i ≤ k − 1. We also say that k paths or k cycles satisfy
the length condition if they can form such a sequence.

In order to study cycles of consecutive (even or odd) lengths in graphs, we begin by
considering paths in bipartite graphs. Our first theorem says that there exist optimal number
of paths in bipartite graphs between two fixed vertices and satisfying the length condition.

Theorem 1.1. Let G be a 2-connected bipartite graph and x, y distinct vertices of G. If every
vertex in G other than x, y has degree at least k+1, then there exist k paths P1, P2, ..., Pk from
x to y in G with the length condition.

We point out that this result is crucial to the proofs of all other results in this paper. The
minimum degree condition in Theorem 1.1 is tight for infinitely many graphs, by considering
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the complete bipartite graphs Kk,n for all n ≥ k, where x, y are two vertices in the part of size
k.

The following theorem on cycles in bipartite graphs can be derived from Theorem 1.1.

Theorem 1.2. Let G be a bipartite graph and v a vertex of G. If every vertex of G other than
v has degree at least k + 1, then G contains k cycles with the length condition.

An immediate corollary of Theorem 1.2 is that every bipartite graph with minimum degree at
least k + 1 contains k cycles with the length condition. The complete bipartite graphs Kk,n

for all n ≥ k also show the tightness of the minimum degree condition.

We then investigate cycle lengths in general graphs.

Theorem 1.3. If the minimum degree of graph G is at least k + 1, then G contains ⌊k/2⌋
cycles with consecutive even lengths. Furthermore, if G is 2-connected and non-bipartite, then
G contains ⌊k/2⌋ cycles with consecutive odd lengths.

We see that Theorem 1.3 is tight, as the complete graph Kk+2 has exactly ⌊k/2⌋ different even
cycle lengths regardless of the parity of k, and it has exactly ⌊k/2⌋ different odd cycle lengths
when k is even.

In the coming two theorems, we consider 3-connected and 2-connected non-bipartite graphs
respectively.

Theorem 1.4. If G is a 3-connected non-bipartite graph with minimum degree at least k+1,
then G contains 2⌊k−1

2 ⌋ cycles with consecutive lengths.

Theorem 1.5. If G is a 2-connected non-bipartite graph with minimum degree at least k+3,
then G contains k cycles with consecutive lengths or the length condition.

Theorem 1.4 improves a result of Fan [19], which was originally asked by Bondy and Vince [6].
Note that Bondy and Vince [6] constructed an infinite family of 2-connected non-bipartite
graphs with arbitrarily large minimum degree but containing no two cycles whose lengths
differ by one. So the connectivity condition in Theorem 1.4 cannot be lowered, and the
conclusion for cycles with the length condition in Theorem 1.5 cannot be dropped. Moreover,
every graph on at most 2k vertices does not have k cycle with the length condition. Hence,
K2k is an example showing that the conclusion for cycles with consecutive lengths in Theorem
1.5 also cannot be removed when k ≥ 4. (But Theorem 1.3 ensures the existence of cycles
with the length condition when k = 2.) Therefore, Theorem 1.5 cannot be further improved to
require only cycles with consecutive lengths or only cycles with the length condition in general.
By considering complete graphs of certain orders, we can see that the difference between the
minimum degree conditions in Theorems 1.4 and 1.5 and the optimal bounds is at most two.

The next result studies cycle lengths in general graphs, without assuming connectivity and
bipartiteness.

Theorem 1.6. If G is a graph with minimum degree at least k + 4, then G contains k cycles
with consecutive lengths or the length condition.

This improves some aforementioned results in [19, 35]. We direct readers to Section 6 for a
discussion on the tightness of this theorem.
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1.2 Cycle lengths modulo k

The study of cycle lengths modulo an integer k can be dated to Burr and Erdős (See [14]).
They conjectured that there exists a constant ck for each odd k such that every graph with
average degree at least ck contains cycles of all lengths modulo k. This conjecture was resolved
by Bollobás in [2], where he proved that ck ≤ 2[(k+1)k−1]/k. Thomassen [32,33] generalized
this by showing that every graph G with minimum degree at least 4k(k+1) contains cycles of
all lengths m modulo k, except when m is odd and k is even. Note that the exceptional case
is needed, as when k is even and G is bipartite, there is no odd cycle in G and thus no cycle of
odd length m modulo k. Thomassen [32] observed that Kk+1 has no cycle of length 2 modulo
k, and made the following conjecture.

Conjecture 1.7 (Thomassen [32]). For every positive integer k, every graph with minimum
degree at least k + 1 contains cycles of all even lengths modulo k.

Thomassen [32] also proved that there exists a function θ(k) for every k such that every 2-
connected non-bipartite graph with minimum degree at least θ(k) contains cycles of all lengths
modulo k. Note that the same graphs defined before Section 1.1 show that 2-connectivity and
non-bipartiteness are necessary conditions here (for even k).

Conjecture 1.8 (Thomassen [32]). For every positive integer k, every 2-connected non-
bipartite graph with minimum degree at least k + 1 contains cycles of all lengths modulo k.1

It is known that the minimum degree Ω(k) suffices for both Conjectures 1.7 and 1.8. A
theorem of Verstraëte [35] implies that for all k, every graph with average degree at least 8k
contains cycles of all even lengths modulo k. For all odd k, a result of Fan [19] shows that
minimum degree at least 3k − 2 suffices. Diwan [12] obtained a better bound for Conjecture
1.7 that for every positive integer k, every graph G with minimum degree at least 2k − 1
contains cycles of all even lengths modulo k, and every graph with minimum degree at least
k + 1 contains a cycle of length 4 modulo k. For Conjecture 1.8, a recent result of [27] about
consecutive odd cycles implies that minimum degree Ω(k) is suffices to ensure the existence of
cycles of all lengths modulo k.

Using our results in Section 1.1, we obtain several consequences on cycle lengths modulo
k, which improve all previous bounds on Conjectures 1.7 and 1.8. In particular, the following
theorem settles both Conjectures 1.7 and 1.8 for all even integers k.

Theorem 1.9. Let k be a positive even integer. If G is a graph with minimum degree at least
k + 1, then G contains cycles of all even lengths modulo k. Furthermore, if G is 2-connected
and non-bipartite, then G contains cycles of all lengths modulo k.

The case for odd k seems more intricate than the case for even k. The next two theorems
can be derived from Theorems 1.5 and 1.6, respectively.

Theorem 1.10. Let k be a positive odd integer. If G is a 2-connected non-bipartite graph with
minimum degree at least k + 3, then G contains cycles of all lengths modulo k.

1It is quoted from [32] that “Kk+2 shows that θ(k) ≥ k+2. It is tempting to conjecture that equality holds.”
Since Kk+2 does contain cycles of all lengths modulo k, we believe that it meant to conjecture θ(k) = k + 1.
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Theorem 1.11. Let k be a positive odd integer. If G is a graph with minimum degree at least
k + 4, then G contains cycles of all lengths modulo k.

In other words, when k is odd, the difference between the minimum degree conditions of our
results and the bounds of Thomassen’s conjectures is at most three.

1.3 Cycles of consecutive lengths and chromatic number

The chromatic number and the length of cycles are also related. Diwan, Kenkre and Vish-
wanathan [13] conjectured that for every pair of integers m and k, if graph G has no cycle of
length m modulo k, then the chromatic number of G is at most k + o(k). This was resolved
by Chen, Ma and Zang in a recent paper [8], where they also studied the relations between
cycle lengths modulo k and chromatic number of digraphs.

Given a graph G, define Le(G) and Lo(G) to be the sets of even and odd cycle lengths in G,
respectively. We define ce(G) and co(G) to be the largest integers m and n, respectively, such
that G contains m cycles of consecutive even lengths and n cycles of consecutive odd lengths.
And we denote the largest integer ℓ by c(G) such that G contains ℓ cycles of consecutive
lengths.

We say that a graph G is k-chromatic if its chromatic number χ(G) equals k. It is well-
known that every k-chromatic graph has a cycle of length at least k. In 1966, Erdős and
Hajnal [18] provided an analogue that every k-chromatic graph has an odd cycle of length
at least k − 1. Confirming a conjecture of Bollobás and Erdős, Gyarfás [20] generalized the
result of Erdős and Hajnal by showing that every graph G satisfies χ(G) ≤ 2|Lo(G)| + 2.
Mihok and Schiermeyer [28] proved that χ(G) ≤ 2|Le(G)| + 3 for every graph G. Recently,
Kostochka, Sudakov and Verstraëte [25] proved a conjecture of Erdős [15] that every triangle-
free k-chromatic graph G contains at least Ω(k2 log k) cycles of consecutive lengths.

Using Theorem 1.3, we obtain a new upper bound of the chromatic number in terms of
the longest sequence of consecutive even or odd cycle lengths.

Theorem 1.12. For every graph G, χ(G) ≤ 2min{ce(G), co(G)} + 3.

This strengthens the result of Mihok and Schiermeyer [28], as clearly ce(G) ≤ |Le(G)|.
In addition, Theorem 1.12 is tight for the complete graphs on odd number of vertices, as
min{ce(K2k+3), co(K2k+3)} = k.

Moreover, we show that the chromatic number can be bounded from above by the longest
sequence of consecutive cycle lengths.

Theorem 1.13. For every graphs G, χ(G) ≤ c(G) + 4.

On the other hand, complete graphs show that χ(G) ≥ c(G) + 2.

1.4 Notation and organization

Let G be a graph and X a subset of V (G). We denote the set of vertices not in X but adjacent
to some vertex in X by NG(X), and we define NG[X] := NG(X) ∪X. If X = {x}, we simply
write NG(x) and NG[x] instead. For a subgraph D of G, we define NG(D) := NG(V (D)) and
NG[D] := NG[V (D)]. Often we drop the subscript when G is clear from context. For a vertex
v of G, the degree of v, denoted by dG(v), is the number of edges in G incident with v, and we
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define dX(v) := |NG(v) ∩X|. A vertex is a leaf in G if it has degree one in G. For S ⊆ V (G),
we denote the subgraph of G induced on V (G) − S by G − S; for S ⊆ E(G), we denote the
graph (V (G), E(G) − S) by G− S. When S ⊆ V (G) ∪E(G) with |S| = 1, we write G− S as
G − s, where s is the unique element of S. When we identify a subset S of V (G), we always
delete all resulting loops and parallel edges to keep the graph simple.

A pair (A,B) of subsets of V (G) is a separation of G of order k, if V (G) = A∪B, |A∩B| = k
and G has no edge with one end in A − B and the other in B − A. A vertex v of a graph
G is a cut-vertex if G − v contains more components than G. A block B in G is a maximal
connected subgraph of G such that there exists no cut-vertex of B. So a block is an isolated
vertex, an edge or a 2-connected graph. An end-block in G is a block in G containing at most
one cut-vertex of G. If D is an end-block of G and a vertex x is the only cut-vertex of G
with x ∈ V (B), then we say that D is an end-block with cut-vertex x. Let B(G) be the set of
blocks in G and C(G) be the set of cut-vertices of G. The block structure of G is the bipartite
graph with bipartition (B(G), C(G)), where x ∈ C(G) is adjacent to B ∈ B(G) if and only if
x ∈ V (B). Note that the block structure of any graph G is a forest, and it is connected if and
only if G is connected. For every positive integer k, we say that a graph G is k-critical if it
has chromatic number k and every proper subgraph of G has chromatic number less than k.

The rest of this paper is organized as follows. In Section 2, we consider paths in bipartite
graphs and prove Theorem 1.1 by induction. We then apply Theorem 1.1 in Section 3 to
obtain results about paths in general graphs, which will be heavily used later. In Section 4, we
focus on cycles with the length condition and prove Theorems 1.2 and 1.3, from which we also
derive Theorems 1.9 and 1.12. In Section 5, we first prove Theorem 5.2 on cycles of consecutive
lengths, and then show how to derive the rest theorems mentioned in this section. Finally, we
close the paper by mentioning some concluding remarks and open problems in Section 6.

2 Consecutive paths in bipartite graphs

We shall prove Theorem 1.1 in this section. To simplify the arguments, we shall prove a more
general (but indeed equivalent) result. For this purpose, we introduce the following important
concepts. We say that (G,x, y) is a rooted graph if G is a graph and x, y are distinct vertices
of G. The vertices x, y are called the roots of (G,x, y). A rooted graph (G,x, y) is bipartite if
and only if G is bipartite. The minimum degree of (G,x, y) is min{dG(u) : u ∈ V (G)−{x, y}}.
We say that (G,x, y) is 2-connected if

• G is a connected graph with |V (G)| ≥ 3, and

• every end-block of G contains at least one of x, y as a non-cut-vertex.

Note that the block structure of G is a path if (G,x, y) is 2-connected. And x, y are in the
same block of G if and only if G is 2-connected.

On the other hand, ifG is 2-connected, then (G,x, y) is 2-connected for every pair of distinct
vertices x, y. Therefore, Theorem 1.1 is an immediate corollary of the following theorem.

Theorem 2.1. Let (G,x, y) be a 2-connected bipartite rooted graph. For any positive integer
k, if the minimum degree of (G,x, y) is at least k + 1, then there exist k paths in G from x to
y satisfying the length condition.
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We shall prove Theorem 2.1 by induction on |V (G)| + |E(G)|. In the rest of this section,
we define (G,x, y) to be a minimum counterexample (with respect to |V (G)|+ |E(G)|). That
is, (G,x, y) is a 2-connected bipartite rooted graph with minimum degree at least k + 1 such
that G does not contain k paths from x to y satisfying the length condition; however, for any
2-connected bipartite rooted graph (H,u, v) with |V (H)|+ |E(H)| < |V (G)|+ |E(G)| and for
any positive integer r, if the minimum degree of (H,u, v) is at least r + 1, then there are r
paths in H from u to v satisfying the length condition. By symmetry, we assume that

dG(x) ≤ dG(y). (1)

Throughout the rest of this section, we will exploit related properties of G and prove a
series of lemmas, which will lead to the final contradiction and thus complete the proof of
Theorem 2.1. We start by proving the following useful lemma.

Lemma 2.2. |V (G)| ≥ 4, G is 2-connected, and k ≥ 3.

Proof. If |V (G)| = 3, then (G,x, y) has minimum degree two, so k = 1 and the theorem
follows. Hence |V (G)| ≥ 4.

Suppose that G is not 2-connected. Then there exist a cut-vertex b and two connected
subgraphs G1, G2 of G such that G = G1∪G2 and V (G1)∩V (G2) = {b}, where x ∈ V (G1)− b
and y ∈ V (G2)− b. Since |V (G1)|+ |V (G2)| = |V (G)| + 1 ≥ 5, by symmetry we may assume
that |V (G1)| ≥ 3. So (G1, x, b) is 2-connected bipartite with minimum degree at least k + 1.
By induction, there exist k paths P1, ..., Pk in G1 from x to b with the length condition. Let
P be a path in G2 from b to y. Concatenating P with each Pi leads to k paths in G from x
to y with the length condition, a contradiction. Therefore G is 2-connected.

Since G is 2-connected, Theorem 2.1 is obvious when k = 1. The case k = 2 can be derived
by the following special case of [19, Corollary 3.1]: if H is a 2-connected (not necessarily
bipartite) graph and every vertex of H other than two distinct vertices u, v has degree at
least three, then H contains two paths R1, R2 from u to v such that |E(R1)| ≥ 2 and 1 ≤
|E(R2)|−|E(R1)| ≤ 2. To see the implication for the case k = 2, just notice that G is bipartite
and thus all paths in G from x to y are of the same parity, implying |E(R2)| − |E(R1)| = 2.
This shows that k ≥ 3.

Lemma 2.3. x and y are not adjacent in G.

Proof. Suppose that x is adjacent to y in G. Let G′ = G − xy. Since G is 2-connected,
every end-block of G′ contains at least one of x, y as non-cut-vertex. Therefore, (G′, x, y) is
2-connected bipartite with minimum degree at least k + 1. The induction hypothesis implies
that G′, and hence G, contains k paths from x to y with the length condition, a contradiction.

Lemma 2.4. G− y has a cycle of length four containing x.

Proof. Suppose that x is not contained in any 4-cycle inG−y. Then dN(x)(v) ≤ 1 for every v ∈
V (G)− {x, y}.

Let G′ be the graph obtained from G by contracting N [x] into a new vertex x′. It is clear
that G′ is connected and bipartite, and the minimum degree of (G′, x′, y) is at least k + 1 in
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G′. If G′ is not 2-connected, then x′ is the unique cut-vertex of G′. Let H be the block of G′

containing x′ and y. Note that H = G′ if G′ is 2-connected.
Suppose that H is not an edge, then (H,x′, y) is 2-connected bipartite with minimum

degree at least k + 1. By the induction hypothesis, H contains k paths P ′
1, ..., P

′
k from x′ to y

with the length condition. So G−x contains k paths P1, ..., Pk from NG(x) to y with the length
condition. Let xi be the end of Pi contained in NG(x) for each 1 ≤ i ≤ k. By concatenating
the edge xxi with Pi for each 1 ≤ i ≤ k, G contains k paths from x to y with the length
condition, a contradiction.

Therefore, H is an edge, which together with Lemma 2.3 shows that NG(y) ⊆ NG(x). By
(1), NG(x) = NG(y). We denote NG(x) by N .

Since k ≥ 3 and G is bipartite, V (G) 6= N∪{x, y}. So there exists a component D of G−N
not containing x and y. Since G is 2-connected, |NG(D)| ≥ 2. Fixing a vertex x′′ ∈ NG(D),
let G′′ be the graph obtained from G[NG[D]] by identifying NG(D) − x′′ into a new vertex
y′′. Since G is 2-connected and bipartite, (G′′, x′′, y′′) is also 2-connected and bipartite. Since
dN (v) ≤ 1 for every v ∈ V (D), the minimum degree of (G′′, x′′, y′′) is at least k + 1. By
induction, there exists a sequence of k paths in G′′ from x′′ to y′′ with the length condition.
So G − {x, y} contains k paths from N to N with the length condition. By adding an edge
between x and N and an edge between between y and N into each of these k paths, we can
obtain k paths in G from x to y with the length condition, a contradiction.

The following notion is critical for the rest of the proof in this section. Let s be a positive
integer. A complete bipartite subgraph Q of G with bipartition (Q1, Q2) is called an s-core if
x ∈ Q2, y /∈ V (Q), |Q1| ≥ |Q2| = s+ 1, and for every v ∈ V (G)− (V (Q) ∪ {y}),

dQ1
(v) ≤ s+ 1 and dQ2

(v) ≤ s. (2)

Since G is bipartite, every vertex v ∈ V (G) − (V (Q) ∪ {y}) is adjacent to at most one of Q1

and Q2, so dQ(v) = max{dQ1
(v), dQ2

(v)} ≤ s+ 1.

The next lemma is straightforward but will be frequently used. We omit the proof.

Lemma 2.5. If Q is an s-core in G, then for every u ∈ Q1 there exist s+ 1 paths in Q from
x to u with lengths 1, 3, . . . , 2s + 1, respectively, and for every v ∈ Q2 − x there exist s paths
in Q from x to v with lengths 2, 4, . . . , 2s, respectively.

Lemma 2.6. G contains an s-core Q for some integer s ≥ 1 such that the following hold. Let
C be the component of G−Q containing y. If G has an edge between C and Q2 − x, then for
every v ∈ V (G) − V (Q ∪ C), dQ1

(v) ≤ s and thus dQ(v) ≤ s.

Proof. Recall that y is not adjacent to x by Lemma 2.3. By Lemma 2.4 there exists a 4-cycle
in G − y containing x. Thus there exists a complete bipartite subgraph Q of G − y with
bipartition (Q1, Q2) such that x ∈ Q2 and |Q1| ≥ |Q2| ≥ 2. Let C be the component of
G− V (Q) containing y. We further choose Q such that

(a). |Q2| is maximum,

(b). subject to (a), Q1 is maximal, and

(c). subject to (a) and (b), |V (C)| is maximum.
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Let s = |Q2| − 1. We first prove that Q is an s-core, which suffices to show (2). Suppose
to the contrary that there exists a vertex v ∈ V (G) − (V (Q) ∪ {y}) satisfying that dQ1

(v) ≥
s + 2 or dQ2

(v) ≥ s + 1. If dQ1
(v) ≥ s + 2, then |NG(v) ∩ Q1| ≥ s + 2 = |Q2 ∪ {v}|,

and G[(NG(v) ∩ Q1) ∪ Q2 ∪ {v}] is a complete bipartite subgraph in G − y with bipartition
(NG(v) ∩ Q1, Q2 ∪ {v}), contradicting (a). So dQ2

(v) ≥ s + 1, that is Q2 ⊆ NG(v). Hence
(Q1 ∪ {v}, Q2) is a complete bipartite subgraph of G − y, contradicting (b). Therefore Q is
indeed an s-core.

Suppose that the lemma does not hold. So by (2), there exists a vertex v ∈ V (G)−V (Q∪C)
such that |NG(v)∩Q1| = s+1. Assume that some vertex in C is adjacent to a vertex z ∈ Q2−x.
Let Q′

2 = Q2 ∪ {v} − {z}, Q′
1 = {a ∈ V (G) : Q′

2 ⊆ NG(a)}, and Q′ = G[Q′
1 ∪ Q′

2]. Since y is
not adjacent to x in G, y 6∈ Q′

1 and thus y /∈ V (Q′). Furthermore, NG(v) ∩ Q1 ⊆ Q′
1, so Q′

is a complete bipartite subgraph of G − y containing x with |Q′
1| ≥ s + 1 = |Q′

2|, which also
satisfies (a) and (b). However, since v is in a component of G − V (Q) different from C, the
component of G − V (Q′) containing y contains C and z. This contradicts the choice of Q as
it violates (c). This proves the lemma.

In the rest of this section, Q denotes the s-core mentioned in Lemma 2.6, and we let C be
the component of G− V (Q) containing y.

Next we study the situation when there is an edge between C andQ2−x. We will constantly
use the following easy fact in the proofs: if A and B are two arithmetic progressions with
common difference two, then the elements of the set {a+ b : a ∈ A, b ∈ B} form an arithmetic
progression of length |A|+ |B| − 1 with common difference two.

Lemma 2.7. If C is adjacent in G to some vertex a ∈ Q2 − x, then the following hold.

1. G− V (C) does not contain k paths from x to a satisfying the length condition.

2. G− V (C) does not contain k− s+1 paths from Q1 to Q1 internally disjoint from V (Q)
and satisfying the length condition.

3. G − V (C) does not contain k − s + 2 paths from Q1 to Q2 − {x, a} internally disjoint
from V (Q) and satisfying the length condition.

4. G − V (C) does not contain k − s + 1 paths from Q1 to {x, a} internally disjoint from
V (Q) and satisfying the length condition.

Proof. Suppose that G− V (C) contains k paths from x to a satisfying the length condition.
Then concatenating each path with a fixed path in G[V (C) ∪ {a}] from a to y, we obtain k
paths in G from x to y satisfying the length condition, a contradiction.

Suppose that G−V (C) contains k−s+1 paths P1, P2, . . . , Pk−s+1 from Q1 to Q1 internally
disjoint from V (Q) and satisfying the length condition. For each i, let ui, vi ∈ Q1 be the two
ends of Pi. Then Q − {vi, a} contains s paths from x to ui with length 1, 3, . . . , 2s − 1,
respectively. By concatenating these s paths with Pi and the edge via for all 1 ≤ i ≤ k− s+1,
we obtain k paths in G− V (C) from x to a with the length condition, a contradiction.

Suppose that G−V (C) contains k− s+2 paths P1, P2, . . . , Pk−s+2 from Q1 to Q2−{x, a}
internally disjoint from V (Q) and satisfying the length condition. For each i, let ui ∈ Q2 −
{x, a} and vi ∈ Q1 be the ends of Pi. Then Q−{vi, a} contains s− 1 paths from x to ui with
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length 2, 4, . . . , 2s − 2, respectively. By concatenating these s− 1 paths with Pi and the edge
via for all 1 ≤ i ≤ k − s + 2, we obtain k paths in G − V (C) from x to a with the length
condition, a contradiction.

Suppose that G − V (C) contains k − s + 1 paths P1, P2, . . . , Pk−s+1 from Q1 to {x, a}
internally disjoint from V (Q) and satisfying the length condition. For each i, let ui ∈ Q1 and
vi ∈ {x, a} be the ends of Pi. Then Q− vi contains s paths from ui to {x, a}− vi with lengths
1, 3, . . . , 2s−1, respectively. Concatenating these s paths with Pi for all 1 ≤ i ≤ k− s+1, this
gives rise to k paths in G− V (C) from x to a with the length condition, a contradiction.

Lemma 2.8. If C is adjacent in G to some vertex a ∈ Q2 − x, then NG(Q1) ⊆ Q2 ∪ V (C).

Proof. Suppose that NG(Q1) 6⊆ Q2 ∪ V (C). Then there is a component D of G − V (Q)
other than C with |NG(D) ∩ Q1| ≥ 1. Since Q contains s paths from x to a with the length
condition, s ≤ k − 1 by Lemma 2.7.

Claim 1: If B is an end-block of D, then NG(B − b) ∩ (Q1 ∪ {x, a}) 6= ∅, where b is the
cut-vertex of D contained in B.

Proof of Claim 1. Suppose to the contrary that NG(B− b)∩ V (Q) ⊆ Q2 −{x, a}. Since
G is 2-connected, we have |V (Q2)−{x, a}| ≥ 1 and thus s ≥ 2. Let G1 be the graph obtained
from G[V (B) ∪ (NG(B − b) ∩ V (Q))] by identifying NG(B − b) ∩ V (Q) into a vertex x1. So
(G1, x1, b) is 2-connected bipartite and has minimum degree at least (k + 1) − (s − 2). By
induction G1 has k − s + 2 paths from x1 to b with the length condition. There is a path
in NG[D − V (B − b)] from b to Q1. So G − V (C) has k − s + 2 paths from Q2 − {x, a} to
Q1 internally disjoint from V (Q) and satisfying the length condition, contradicting Lemma
2.7. ✷

Claim 2: NG(D) ∩ {x, a} = ∅.
Proof of Claim 2. Suppose that NG(D) ∩ {x, a} 6= ∅. Let G2 be the graph obtained

from NG[D] − (Q2 − {x, a}) by identifying NG(D) ∩ {x, a} into a vertex x2 and identifying
NG(D)∩Q1 into a vertex y2. For every v ∈ V (G2)−{x2, y2}, dQ(v) ≤ s by Lemma 2.6, and v
is adjacent to at most one of Q1 and Q2. If v is not adjacent to Q1 or Q2, then dG2

(v) ≥ k+1;
if v is adjacent to Q1, it is clear that dG2

(v) ≥ (k+1)− (s− 1); if v is adjacent to Q2 but not
to any one of x, a, then dQ(v) ≤ s − 1, implying that dG2

(v) ≥ (k + 1) − (s − 1); otherwise v
is adjacent to at least one of x, a, then dG2

(v) ≥ (k + 1) − (s − 1). Therefore (G2, x2, y2) has
minimum degree at least k − s + 2. By Claim 1, every end-block of G2 contains at least one
of x2, y2 as a non-cut-vertex, so (G2, x2, y2) is 2-connected and bipartite. By induction, G2

contains k − s+ 1 paths from x2 to y2 satisfying the length condition. So G− V (C) contains
k − s + 1 paths from {x, a} to Q1 internally disjoint from V (Q) and satisfying the length
condition, contradicting Lemma 2.7. ✷

Claim 3: |NG(D) ∩Q1| ≥ 2.
Proof of Claim 3. Suppose to the contrary that |NG(D)∩Q1| ≤ 1. By the choice of the

component D, NG(D)∩Q1 = {x3} for some vertex x3. Since G is 2-connected, Claim 2 implies
that |NG(D) ∩ (Q2 − {x, a})| ≥ 1, so s ≥ 2. Let G3 be the graph obtained from NG[D] by
identifying NG(D)∩ (Q2 −{x, a}) into a vertex y3. In view of Claim 2, every end-block of G3

contains at least one of x3, y3 as a non-cut-vertex, so (G3, x3, y3) is 2-connected and bipartite.
For any v ∈ V (G3)−{x3, y3}, if v is adjacent to Q1, then dG3

(v) = dG(v) ≥ k−s+3; otherwise
NG(v) ∩Q ⊆ Q2 − {x, a}, also implying dG3

(v) ≥ (k + 1)− (s− 2) = k − s+ 3. By induction,
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G3 contains k−s+2 paths from x3 to y3 with the length condition. Hence, G−V (C) contains
k− s+2 paths from Q1 to Q2−{x, a} internally disjoint from V (Q) and satisfying the length
condition, contradicting Lemma 2.7. ✷

Fix a vertex x4 ∈ NG(D)∩Q1. Claim 3 ensures that NG(D)∩Q1 − x4 6= ∅. Let G4 be the
graph obtained from G[NG[D]−Q2] by identifying NG(D) ∩Q1 − x4 into a vertex y4. Recall
Lemma 2.6 that dQ(v) ≤ s for every v ∈ V (D). For every v ∈ V (G4)− {x4, y4} adjacent in G
to Q, if v is adjacent to Q1, then dG4

(v) ≥ (k + 1)− (s− 1); otherwise v is adjacent to Q2, so
dG4

(v) ≥ (k+1)−(s−1) by Claim 2. Hence (G4, x4, y4) has minimum degree at least k−s+2.
By Claims 1 and 2, every end-block of G4 contains at least one of x4, y4 as a non-cut-vertex,
so (G4, x4, y4) is 2-connected and bipartite. By induction, G4 contains k − s + 1 paths from
x4 to y4 satisfying the length condition. So G− V (C) contains k− s+1 paths from Q1 to Q1

internally disjoint from V (Q) and satisfying the length condition, contradicting Lemma 2.7.

Lemma 2.9. C contains at least two vertices, and no vertex of C − y is a leaf in C.

Proof. We first prove that no vertex of C − y is a leaf in C. Suppose that C has a leaf
z ∈ V (C − y). If z is adjacent to Q1, by (2) we have s + 1 ≥ dQ1

(z) ≥ k, so by Lemma 2.5,
there are k paths in V (Q) from x to NG(z) ∩ Q1 with lengths 1, 3, . . . , 2k − 1, respectively,
which can be easily extended to k paths in G from x to y with the length condition. Hence z
is adjacent to Q2. By Lemma 2.2 and (2), we have s ≥ dQ2

(z) ≥ k ≥ 3, so there is a vertex
a ∈ NG(z) ∩ Q2 − x. By Lemma 2.5, there are k paths in Q from x to a with the length
condition, contradicting Lemma 2.7.

It suffices to show that C has at least two vertices. We suppose for a contradiction that C
consists of one vertex, i.e., V (C) = {y}.

Claim 1: NG(x) = NG(y) = Q1 and V (G) 6= V (Q ∪ C).
Proof of Claim 1: If y is adjacent in G to a vertex a ∈ Q2 − x, then NG(Q1) ⊆ Q2 ∪{y}

by Lemma 2.8. Since G is bipartite, NG(Q1) ⊆ Q2, so s ≥ k. Then by Lemma 2.5, Q
contains k paths from x to a with the length condition, contradicting Lemma 2.7. Hence
NG(y) ⊆ Q1 ∪ {x}. But x is not adjacent to y, so NG(y) ⊆ Q1 ⊆ NG(x). By the assumption
(1), the degree of x in G is at most the degree of y in G. This proves that NG(x) = NG(y) = Q1.

Similarly, if V (G) = V (Q ∪ C), then NG(Q1) = Q2 ∪ {y} and s ≥ k − 1. Let z ∈
NG(y)∩Q1. By Lemma 2.5, Q contains s+1 ≥ k paths from x to z with the length condition,
a contradiction. Therefore, V (G) 6= V (Q ∪ C). ✷

Claim 2: |Q1| ≥ 3.
Proof of Claim 2: Suppose |Q1| ≤ 2, then |Q1| = 2 and s = 1. Let Q1 = {u,w}, Q2 =

{v, x} and G1 = G−{x, y}. Note that G1 is connected. By Claim 1, NG(x) = NG(y) = {u,w},
so (G1, u, w) has minimum degree at least k+1 in G1. If G1 is 2-connected, then (G1, u, w) is
2-connected. Otherwise, since G is 2-connected and NG(x) = NG(y) = {u,w}, u and w are in
different end-blocks of G1; since u,w ∈ NG(v), v is the cut-vertex of G1 contained in both of
the two end-blocks of G1. So (G1, u, w) is 2-connected in either case. Therefore, by induction,
G1 has k paths from u to w satisfying the length condition. Concatenating them with xu,wy
gives k path in G from x to y satisfying the length condition. ✷

Let u ∈ Q1 and v ∈ Q2 − x be fixed. Then any vertex in G − {u, v} other than x, y has
degree at least k in G − {u, v}. If G − {u, v} is 2-connected, then G − {u, v} contains k − 1
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paths from x to y with the length condition. Among these paths, let R be the longest one
such that w ∈ Q1−u is the end of R− y other than x. These k− 1 paths from x to y together
with the path (R− y) ∪wvuy are k paths in G from x to y with the length condition. Hence
G− {u, v} is not 2-connected and contains at least two end-blocks.

Suppose that there exists a component H of G − {u, v} disjoint from Q ∪ C. Since G
is 2-connected, (G[V (H) ∪ {u, v}], u, v) is 2-connected bipartite and has minimum degree at
least k + 1. So G contains k paths from u to v internally disjoint from V (Q) ∪ {y} with the
length condition. By concatenating xu and vwy with each path, where w is a vertex in Q1−u,
we obtain k paths in G from x to y with the length condition, a contradiction. Therefore,
G− {u, v} is connected.

By Claims 1 and 2, G[V (Q ∪ C)] − {u, v} is 2-connected. So there is an end-block B of
G− {u, v} with the cut-vertex b such that (B − b) ∩ ((Q ∪C)− {u, v}) = ∅. Since G− {u, v}
is connected, there exists a path P in G−{u, v} from b to some vertex z ∈ V (Q∪C)−{u, v}
internally disjoint from (B ∪Q ∪ C)− {u, v}. Note that z /∈ {x, y} as NG(x) = NG(y) = Q1.
So z ∈ V (Q)− {u, v, x}.

Note that NG(B−b) ⊆ {u, v, b}. Suppose that u 6∈ NG(B−b). Then (G[V (B)∪{v}], v, b) is
2-connected bipartite with minimum degree at least k+1. So induction ensures that G[V (B)∪
{v}] contains k paths P1, P2, ..., Pk from v to b with the length condition. If z ∈ Q1, let
P ′ = P ∪{zy}; if z ∈ Q2, fix a vertex w ∈ Q1−u and let P ′ = P ∪{zw,wy}. So in either case
P ′ is a path from b to y and internally disjoint from B ∪ {u, v, x}. By concatenating Pi with
xuv and P ′ for each 1 ≤ i ≤ k, we obtain k paths in G from x to y with the length condition.
Therefore, u ∈ NG(B − b) and hence (G[V (B) ∪ {u}], u, b) is 2-connected.

Since (G[V (B) ∪ {u}], u, b) is 2-connected bipartite with minimum degree at least k,
G[V (B) ∪ {u}] contains k − 1 paths from u to b with the length condition. By concate-
nating these paths with P , this gives a sequence of k− 1 paths R1, R2, ..., Rk−1 in G− v from
u to z internally disjoint from V (Q ∪ C) with the length condition. If z ∈ Q1, then by Claim
2, there exists a vertex w ∈ Q1 − {u, z}, and we let Rk be the path obtained from Rk−1 by
concatenating zvw. Then R1, R2, ..., Rk form a sequence of k paths in G − {x, y} from Q1

to Q1 with the length condition, which, by Claim 1, can be easily extended to k path in G
from x to y with the length condition. Thus z ∈ Q2. By Claim 2, there exist two distinct
vertices w,w′ ∈ Q1 − u. For each 1 ≤ i ≤ k − 1, let R′

i be the path obtained from Ri by
concatenating xu and zwy; and let R′

k be the path obtained from Rk−1 by concatenating xu
and zwvw′y. Therefore, R′

1, R
′
2, ..., R

′
k form a sequence of k paths in G from x to y with the

length condition. This proves the lemma.

Lemma 2.10. G has an edge between Q1 and C − y.

Proof. Note that C−y 6= ∅ by Lemma 2.9. Suppose to the contrary that NG(C−y)∩Q1 = ∅.
We claim that NG(C − y) ∩ (Q2 − x) = ∅. Otherwise, C − y is adjacent to some vertex

a ∈ Q2−x. By Lemma 2.8 and the assumption NG(C− y)∩Q1 = ∅, it follows that NG(Q1) ⊆
Q2∪{y}. So for some u ∈ Q1, NG(u) ⊆ Q2∪{y}. This implies that s ≥ k−1, and if s = k−1,
then uy ∈ E(G). If s ≥ k, by Lemma 2.5, there are at least k paths in Q from x to a with the
length condition, contradicting Lemma 2.7. So s = k−1 and thus uy ∈ E(G). Again by Lemma
2.5, there are at least k paths in Q from x to u with the length condition. Concatenating them
with uy gives k paths from x to y with the length condition, a contradiction. This proves that
NG(C − y) ∩ (Q2 − x) = ∅.
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Therefore, NG(C−y) = {x, y}. Since G is 2-connected, (G[V (C)∪{x}], x, y) is 2-connected
bipartite and has minimum degree at least k + 1. By the induction hypothesis, G contains k
paths from x to y satisfying the length condition.

Lemma 2.11. G does not contain k − s paths from y to Q1 internally disjoint from V (Q)
with the length condition nor k − s + 1 paths from y to Q2 − x internally disjoint from V (Q)
with the length condition.

Proof. Suppose to the contrary that there exist k − s paths P1, . . . , Pk−s in G from y to Q1

internally disjoint from V (Q) and satisfying the length condition. For each 1 ≤ i ≤ k − s, let
ui ∈ Q1 be the end of Pi other than y. By Lemma 2.5, Q contains s + 1 paths from x to ui
with lengths 1, 3, ..., 2s+1, respectively. Then concatenating these s+1 paths with Pi for each
1 ≤ i ≤ k − s leads to k paths in G from x to y with the length condition, a contradiction.

Suppose to the contrary that there exist k−s+1 paths R1, . . . , Rk−s+1 in G from y to Q2−x
internally disjoint from V (Q) and satisfying the length condition. For each 1 ≤ j ≤ k− s+1,
let vj ∈ Q2 − x be the end of Rj other than y. By Lemma 2.5, Q contains s paths from x to
vj with lengths 2, 4, . . . , 2s, respectively. Then concatenating these s paths with Rj for each
1 ≤ j ≤ k− s+1 leads to k paths in G from x to y with the length condition, a contradiction.

We say that an end-block B of C is feasible if y /∈ V (B − b), where b is the cut-vertex of
C contained in B.

Lemma 2.12. s = 1, and C is not 2-connected. Moreover, if B is a feasible end-block of C
with the cut-vertex b, then B is 2-connected and NG(B − b) = Q2 ∪ {b}.

Proof. Recall that C contains at least two vertices, and no vertex of C − y is a leaf in C by
Lemma 2.9. So every feasible end-block of C is 2-connected.

Claim 1: C is not 2-connected, and for each feasible end-block B of C with cut-vertex b,
NG(B − b) ∩Q1 = ∅.

Proof of Claim 1. Suppose to the contrary. So either C is 2-connected, or there is an
end-block B of C with cut-vertex b such that y /∈ V (B − b) and B − b is adjacent in G to Q1.
In the former case, define B′ = C and b′ = y, so B′ − b′ is adjacent to Q1 by Lemma 2.10; in
the latter case, define B′ = B and b′ = b, so B′− b′ is adjacent to Q1 by the assumption. Note
that there is a path P in C from b′ to y internally disjoint from B′. Let X = NG(B

′− b′)∩Q1

and define G1 to be the graph obtained from G[B′ ∪ X] by identifying X into a vertex x1.
By (2), (G1, x1, b

′) has minimum degree at least k + 1 − s. Since (G1, x1, b
′) is 2-connected

and bipartite, by induction G1 has k − s paths from b′ to x1 with the length condition. By
concatenating with the path P , it is easy to obtain k − s paths in G from y to Q1 internally
disjoint from V (Q) and satisfying the length condition, contradicting Lemma 2.11. ✷

Claim 1 implies that feasible end-blocks of C exist. Let B be an arbitrary feasible end-block
of C, and let b be the cut-vertex of C contained in B.

Claim 2: NG(B − b) ∩ (Q2 − x) 6= ∅.
Proof of Claim 2. Suppose to the contrary that NG(B − b) ∩ (Q2 − x) = ∅. By Claim 1

and the 2-connectivity of G, NG(B− b) = {b, x}. Define G2 = G[V (B)∪{x}]. Since (G2, x, b)
is 2-connected bipartite and has minimum degree at least k + 1, G2 has k paths from x to b
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with the length condition. By concatenating them with a fixed path in C − V (B − b) from b
to y, we obtain k paths in G from x to y with the length condition. ✷

Finally, we shall prove that s = 1 and NG(B− b) = Q2∪{b}. Suppose that either s ≥ 2, or
s = 1 butNG(B−b) 6= Q2∪{b}. Note that the latter case implies thatNG(B−b) = {b}∪(Q2−x)
by Claims 1 and 2. Define G3 to be the graph obtained from G[V (B)∪(Q2−x)] by identifying
Q2 − x into vertex a′. Claim 2 implies that (G3, a

′, b) is 2-connected and bipartite.
We show that every vertex v ∈ V (G3) − {a′, b} has degree at least k − s + 2 in G3. Note

that v has at most s neighbors in Q2 by (2) and no neighbor in Q1 by Claim 1. If s ≥ 2
and v has at most s − 1 neighbors in Q2, then it is clear that dG3

(v) ≥ (k + 1) − (s − 1). If
s ≥ 2 and v has exactly s neighbors in Q2, then at least one of them is in Q2 − x and thus
dG3

(v) ≥ (k + 1)− (s− 1). It remains to consider s = 1. In this case, as x /∈ NG(B − b), it is
easy to see that dG3

(v) ≥ k + 1. Therefore, (G3, a
′, b) has minimum degree at least k − s+ 2.

By induction, G3 has k−s+1 paths from a′ to b with the length condition. Concatenating
them with a fixed path in C − V (B − b) from b to y, we can obtain k − s+1 paths in G from
y to Q2 − x internally disjoint from V (Q) and satisfying the length condition, contradicting
Lemma 2.11.

By Lemma 2.12, C has at least two end-blocks, but at most one of them contains y as
a non-cut-vertex. So there is at least one feasible end-block of C. We also see that Q2 − x
contains exactly one vertex from Lemma 2.12. In the rest of this section, we denote this vertex
by a. Namely, Q2 = {a, x}.

Lemma 2.13. Let B be a feasible end-block of C with the cut-vertex b. For each vertex u in
Q2 = {a, x}, G[V (B) ∪ {u}] has k − 1 paths from u to b with the length condition.

Proof. Define G′ = G[V (B) ∪ {u}]. So (G′, u, b) is 2-connected and bipartite. By Lemma
2.12, (G′, u, b) has minimum degree at least k. By induction, G′ has k − 1 paths from u to b
with the length condition.

We complete the proof of Theorem 2.1 in the coming last lemma of this section.

Lemma 2.14. G is not a counterexample of Theorem 2.1.

Proof. Define N = NG(Q1) ∩ V (C − y). Lemma 2.10 implies that N 6= ∅. Let B1, B2, ..., Bt

be all feasible end-blocks of C, and let bi be the cut-vertex of C contained in Bi for each i.
Let C ′ be obtained from C by deleting V (Bi − bi) for all i. By Lemma 2.12 and the definition
of feasible end-blocks, C ′ is connected and contains N ∪ {y, b1, b2, ..., bt}.

Claim 1: There exists c ∈ V (C ′) such that no path in C ′−c is fromN∪{y} to {b1, b2, ..., bt}.
Proof of Claim 1. Suppose to the contrary that there exist two disjoint paths P1, P2 in

C ′ from N ∪ {y} to {b1, b2, ..., bt}. Since C ′ is connected, we may assume that y is an end of
one of P1, P2, say P1, by rerouting paths. Denote the end of P2 in N by w. By symmetry,
we may without loss of generality assume that the ends of P1, P2 in {b1, b2, ..., bt} are b1
and b2, respectively. By Lemma 2.13, there exist a sequence of k − 1 paths R1, R2, ..., Rk−1

in G[V (B1) ∪ {a}] from a to b1 with the length condition and a sequence of k − 1 paths
L1, L2, ..., Lk−1 in G[V (B2)∪{x}] from x to b2 with the length condition. Let w′ ∈ Q1∩NG(w).
Since k ≥ 3 by Lemma 2.2, for all i, j ∈ {1, 2, ..., k − 1}, the paths Li ∪ P2 ∪ ww′a ∪ Rj ∪ P1
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give rise to at least 2k − 3 ≥ k paths in G from x to y satisfying the length condition, a
contradiction. ✷

Claim 2: There exists an end-block By of C with cut-vertex by such that y ∈ V (By − by).
Proof of Claim 2. Otherwise, all end-blocks of C are feasible. By Claim 1, there

exist a cut-vertex c of C ′ and two subgraphs C1, C2 of C ′ such that C ′ = C1 ∪ C2 and
V (C1) ∩ V (C2) = {c}, where N ∪ {y} ⊆ C1 and {b1, b2, ..., bt} ⊆ C2. But C2 contains all
cut-vertices of C contained in some end-blocks of C, a contradiction. ✷

Claim 3: For every v ∈ V (C − y), either dQ(v) ≤ 1 or v is a cut-vertex of C separating y
and all feasible end-blocks of C.

Proof of Claim 3. Suppose to the contrary that there exist a vertex v ∈ V (C − y) with
dQ(v) ≥ 2 and a feasible end-block B of C with cut-vertex b such that C−v has a path L from
y to b internally disjoint from B. Since s = 1 by Lemma 2.12, (2) ensures that v is adjacent to
two distinct vertices in Q1, say u1, u2. By Lemma 2.13, there exists a sequence of k − 1 paths
P1, P2, ..., Pk−1 in G[V (B) ∪ {a}] from a to b with the length condition. Then xu1a ∪ Pi ∪ L
for all 1 ≤ i ≤ k − 1 together with xu2vu1a ∪ Pk−1 ∪ L are k paths in G from x to y with the
length condition, a contradiction. ✷

Fix a feasible end-block B of C, and let b be the cut-vertex of C contained in B. By
Lemma 2.13, there exists a sequence of k − 1 paths P1, P2, ..., Pk−1 in G[V (B) ∪ {x}] from x
to b with the length condition. Concatenating them with a fixed path in C from b to by, we
obtain a sequence of k − 1 paths R1, R2, ..., Rk−1 in G[(V (C) ∪ {x}) − V (By − by)] from x to
by with the length condition.

Claim 4: By is an edge yby.
Proof of Claim 4. Suppose to the contrary that By is 2-connected. For every v ∈

V (By) − {y, by}, v is not a cut-vertex of C separating y and feasible end-blocks of C, so
dQ(v) ≤ 1 by Claim 3. So (By, y, by) is 2-connected bipartite with minimum degree at least k.
By induction, By contains k − 1 paths from y to by with the length condition. Concatenating
these k − 1 paths with Ri for each 1 ≤ i ≤ k − 1, we obtain 2k − 3 ≥ k paths in G from x to
y with the length condition, a contradiction. ✷

Suppose that by is adjacent in G to a vertex z ∈ Q1. If y is adjacent to Q1, then Claim 4
will force an odd cycle in G, a contradiction as G is bipartite. So NG(y) ⊆ Q2 ∪{by}. Since G
is 2-connected and xy /∈ E(G), NG(y) = {a, by}. Then Ri ∪ byy for all 1 ≤ i ≤ k − 1 together
with Rk−1 ∪ byzay form k paths in G from x to y with the length condition, a contradiction.
Therefore, by is not adjacent to Q1, that is, by /∈ N . Also by (2), dQ(by) ≤ 1.

Let W be a block of C − y containing by. Since dQ(by) ≤ 1, we have dC−y(by) ≥ k− 1 ≥ 2,
so W is 2-connected. If W = Bi for some i, then V (C) = V (Bi) ∪ {y}, by = bi, and by is
adjacent to Q1 by Lemmas 2.10 and 2.12, a contradiction. So W is not an end-block of C and
thus W ∪ {y} ⊆ C ′.

Since W is 2-connected and by /∈ N , Claim 1 implies that there exists a cut-vertex of C ′

separating N ∪W ∪ {y} and {b1, b2, ..., bt}. Hence C − y has a cut-vertex separating W and
all feasible end-blocks of C. Note that every cut-vertex of C − y contained in W has a path
to some feasible end-block of C internally disjoint from W . Therefore, W has the unique
cut-vertex w of C − y.
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For every v ∈ V (W )−{w, by}, since v is not a cut-vertex of C separating y and all feasible
end-blocks of C, we have dQ(v) ≤ 1 by Claim 3. This together with dQ(by) ≤ 1 imply that
(G[V (W )∪{y}], w, y) is 2-connected bipartite with minimum degree at least k. By induction,
there exists a sequence of k − 1 paths L1, L2, ..., Lk−1 in G[V (W ) ∪ {y}] from w to y with the
length condition. Recall the k−1 paths P1, P2, ..., Pk−1 in G[V (B)∪{x}] from x to b. Let R be
a path in C from b to w internally disjoint from B∪W ∪{y}. Then for all i, j ∈ {1, 2, ..., k−1},
the paths Pi ∪R∪Lj give rise to 2k− 3 ≥ k paths in G from x to y with the length condition,
a contradiction.

This proves Theorem 2.1, which implies Theorem 1.1.

3 Consecutive paths in general graphs

The following two lemmas extend Theorem 2.1 from bipartite graphs to general graphs, which
will be extensively used in the coming sections for finding cycles.

Lemma 3.1. Let (G,x, y) be a 2-connected rooted graph. If the minimum degree of (G,x, y)
is at least k + 1, then G contains ⌊k/2⌋ paths from x to y satisfying the length condition.

Proof. Let G′ be a spanning bipartite subgraph of G with maximum number of edges. So
for every vertex v ∈ V (G), we have dG′(v) ≥ ⌈dG(v)/2⌉. Hence, every vertex of G′ other than
x, y has degree at least ⌊k/2⌋ + 1. By the maximality, G′ is connected.

Suppose that there exists an end-block B of G′ such that V (B − b) ∩ {x, y} = ∅, where
b is the cut-vertex of G′ contained in B. There exists a path P in G − (B − b) from b to
{x, y} as G′ is connected. Since (G,x, y) is 2-connected, there exist two disjoint paths in G
from V (B) to {x, y} internally disjoint from V (B). Rerouting these two paths by the path P ,
we can further obtain two disjoint paths P1, P2 in G from V (B) to {x, y} internally disjoint
from V (B) such that b is an end of P1 or P2, say P1. We denote the end of P2 in B by u.
Every vertex in V (B − b) has degree at least ⌊k/2⌋ + 1 in B, so B is 2-connected bipartite
with minimum degree at least ⌊k/2⌋ + 1. By Theorem 1.1, B contains ⌊k/2⌋ paths from b to
u with the length condition. By concatenating each of them with the paths P1, P2, we obtain
⌊k/2⌋ paths in G from x to y satisfying the length condition.

Therefore, every end-block of G′ contains at least one of x, y as a non-cut-vertex. So
(G′, x, y) is 2-connected bipartite with minimum degree at least ⌊k/2⌋ + 1, by Theorem 2.1
there exist ⌊k/2⌋ paths in G′ (and hence in G) from x to y satisfying the length condition.

Lemma 3.2. Let G a 2-connected graph and x, y, v be distinct vertices of G. If every vertex
of G other than v has degree at least k + 1, then G contains ⌊(k − 1)/2⌋ paths from x to y
satisfying the length condition.

Proof. There is nothing to prove when k ≤ 2, so we may assume that k ≥ 3. Note that G− v
is connected and has minimum degree at least k. If G− v is 2-connected, then it follows from
Lemma 3.1. Hence we may assume that G−v is not 2-connected. Then any end-block of G−v
is 2-connected and has a non-cut-vertex adjacent to v in G.

Let B be an arbitrary end-block of G − v, and let b be the cut-vertex of G − v contained
in B. Suppose that |V (B − b) ∩ {x, y}| = 1. Without loss of generality, we may assume that
x ∈ V (B − b). By Lemma 3.1, B has ⌊(k− 1)/2⌋ paths from x to b with the length condition.
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Concatenating those paths with a fixed path in (G−v)−V (B−b) from b to y gives ⌊(k−1)/2⌋
paths in G from x to y with the length condition. Therefore, |V (B − b) ∩ {x, y}| ∈ {0, 2}.

SinceG−v is not 2-connected, there exists an end-block B′ ofG−v with V (B′−b′)∩{x, y} =
∅, where b′ is the cut-vertex of G − v contained in B′. It follows that NG(B

′ − b′) = {b′, v}.
Since G is 2-connected, G has two disjoint paths P1, P2 from {x, y} to {b′, v} and internally
disjoint from B. Without loss of generality, we may assume that P1 is from x to b′ and P2 is
from y to v. Let u be a vertex in B′− b′ adjacent to v in G. By Lemma 3.1, B′ has ⌊(k−1)/2⌋
paths R1, R2, ..., R⌊(k−1)/2⌋ from b′ to u with the length condition. Then P1 ∪Ri ∪ uv ∪ P2 for
all i are ⌊(k− 1)/2⌋ paths in G from x to y with the length condition. This proves the lemma.

4 Cycles with the length condition

In this section, we consider cycles with the length condition. We first prove Theorem 1.2 in
bipartite graphs. We restate Theorem 1.2 here for the convenience of readers.

Theorem 1.2. Let G be a bipartite graph and v a vertex of G. If every vertex of G other than
v has degree at least k + 1, then G contains k cycles with the length condition.

Proof. Since there is nothing to prove when k = 0, we may assume that k ≥ 1. We define
a 2-connected end-block H of G and an edge xy ∈ E(H) as following. If G is 2-connected,
define H = G, x = v and y to be any neighbor of x in G; if G is not 2-connected, then define
H to be an end-block of G such that v /∈ V (H − h), where h is the cut-vertex of G contained
in H, and define x = h and y to be any neighbor of x in H. In either case, we see that every
vertex of H other than x has degree at least k + 1, and thus H is 2-connected bipartite with
at least three vertices. By Theorem 1.1, H has k paths from x to y with the length condition.
Note that each path has length at least two and thus does not contain the edge xy. By adding
the edge xy, we then obtain k cycles in H (and hence in G) with the length condition.

Remark. From the above proof, it is easy to see that if G is 2-connected bipartite with
minimum degree at least k + 1, then for every edge e of G, there are k cycles in G with the
length condition, and all of those cycles contain e.

We then draw our attention to general graphs and prove Theorem 1.3, which provides
optimal bounds for cycles of consecutive even lengths as well as consecutive odd lengths.

Theorem 1.3. If the minimum degree of graph G is at least k + 1, then G contains ⌊k/2⌋
cycles with consecutive even lengths. Furthermore, if G is 2-connected and non-bipartite, then
G contains ⌊k/2⌋ cycles with consecutive odd lengths.

Proof. We may assume that k ≥ 2, as the case k = 1 is trivial. Let G′ be a spanning bipartite
subgraph of G with the maximum number of edges, and let (A,B) be the bipartition of G′.
If G′ contains a vertex, say v ∈ A, of degree at most ⌊k/2⌋ in G′, then (A − v,B ∪ {v})
will induce a bipartite subgraph of G with more edges than G′, a contradiction. So G′ has
minimum degree at least ⌊k/2⌋+ 1. By Theorem 1.2, G′ (and hence G) contains ⌊k/2⌋ cycles
with the length condition. Note that each of those cycle has even length as G′ is bipartite.

Now we assume that G is 2-connected and non-bipartite additionally. Note that by the
maximality, G′ is connected and bipartite with minimum degree at least ⌊k/2⌋ + 1. Suppose
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that G′ is 2-connected. Since G is non-bipartite, there exist two vertices x, y such that xy ∈
E(G)−E(G′). So both x, y are in the same part of the bipartition (A,B). By Theorem 1.1, G′

has ⌊k/2⌋ paths from x to y with the length condition. Since both of x, y are in the same part
in the bipartition, each of these paths of G′ has even length. By concatenating these paths
with the edge xy, we obtain ⌊k/2⌋ cycles in G with consecutive odd lengths. Hence, G′ is not
2-connected. Let H be an end-block of G′ and h be the cut-vertex of G′ contained in H. Every
vertex of H other than h has degree at least ⌊k/2⌋ + 1 ≥ 2, so H is 2-connected. Since G is
2-connected, there exist z ∈ V (H − h) and w ∈ V (G)− V (H) such that zw ∈ E(G) − E(G′).
By Theorem 1.1, H has ⌊k/2⌋ paths from z to h with the length condition, which, together
with a fixed path in G′ − V (H − h) from h to w, give ⌊k/2⌋ paths in G′ from z to w with the
length condition. As zw ∈ E(G) − E(G′), z and w are in the same part in the bipartition,
so each of those mentioned paths in G′ from z to w has even length. By concatenating these
paths with the edge zw, we obtain ⌊k/2⌋ cycles in G with consecutive odd lengths. This proves
the theorem.

Remark. In fact, we can obtain ⌊k/2⌋ cycles in G with consecutive even lengths under a
weaker condition that all vertices of G, but one, have degree at least k+1. On the other hand,
we do not know if this weaker condition can guarantee the existence of ⌊k/2⌋ consecutive odd
cycles in Theorem 1.3.

As an immediate corollary of Theorem 1.3, we can derive Theorem 1.9, which proves
Conjectures 1.7 and 1.8 when k is even.

Theorem 1.9. Let k be a positive even integer. If the minimum degree of graph G is at least
k + 1, then G contains cycles of all even lengths modulo k. Furthermore, if G is 2-connected
and non-bipartite, then G contains cycles of all lengths modulo k.

Theorem 1.3 also can be used to prove Theorem 1.12, which gives a tight relation between
chromatic number and the number of cycles with the length condition.

Theorem 1.12. For every graphs G, χ(G) ≤ 2min{ce(G), co(G)} + 3.

Proof. We may assume that χ(G) ≥ 3, otherwise the theorem is easy. Let G′ be a χ(G)-
critical subgraph of G. Since G′ is χ(G)-critical, G′ is 2-connected non-bipartite and G′ has
minimum degree at least χ(G) − 1. By Theorem 1.3, G′ contains ⌊χ(G)/2⌋ − 1 cycles with
consecutive even lengths and contains ⌊χ(G)/2⌋−1 cycles with consecutive odd lengths. Hence
min{ce(G′), co(G′)} ≥ ⌊χ(G)/2⌋−1. As every cycle in G′ is a cycle in G, min{ce(G), co(G)} ≥
min{ce(G′), co(G′)} ≥ ⌊χ(G)/2⌋ − 1 ≥ (χ(G) − 1)/2 − 1. This proves the theorem.

We conclude this section by proving a lemma about cycles with the length condition.

Lemma 4.1. Let G be a 2-connected but not 3-connected graph. If the minimum degree of G is
at least k+1, then G contains 2⌊k/2⌋ − 1 cycles satisfying the length condition. Furthermore,
if G is bipartite, then G contains 2k − 1 cycles satisfying the length condition.

Proof. If G is bipartite, let t = k; otherwise, let t = ⌊k/2⌋. Hence, by Theorem 2.1 and
Lemma 3.1, for any subgraph G′ of G, if (G′, x, y) is 2-connected with minimum degree at
least t+ 1, then G′ has t paths from x to y with the length condition. We shall prove that G
contains 2t− 1 cycles satisfying the length condition.
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Since G is 2-connected but not 3-connected, there exists a separation (A,B) of G of order
two. Let A ∩ B = {u, v}. One can easily verify that each of (G[A], u, v) and (G[B], u, v) is a
2-connected rooted graph with minimum degree at least k + 1. Therefore, G[A] has t paths
P1, P2, ..., Pt from u to v with the length condition, and G[B] has t paths R1, R2, ..., Rt from
u to v with the length condition. Then Pi ∪Rj for all 1 ≤ i, j ≤ t are 2t− 1 cycles satisfying
the length condition.

5 Consecutive cycles

We say that a cycle C in a connected graph G is non-separating if G− V (C) is connected.
The following lemma studies some property of non-separating odd cycle, which is a slight
extension of [19, Lemma 3.4].

Lemma 5.1. Let G be a graph with minimum degree at least four. If G contains a non-
separating induced odd cycle, then G contains a non-separating induced odd cycle C, denoted
by v0v1...v2sv0, such that either

1. C is a triangle, or

2. for every non-cut-vertex v of G − V (C), |NG(v) ∩ V (C)| ≤ 2, and the equality holds if
and only if NG(v) ∩ V (C) = {vi, vi+2} for some i, where the indices are taken under the
additive group Z2s+1.

Proof. Let C be a shortest non-separating induced odd cycle in G. We denote C =
v0v1...v2sv0. Let v be a non-cut-vertex of G − V (C), and let NG(v) ∩ V (C) = {vi1 , ..., vit}
for some integers i1, ..., it with 0 ≤ i1 < ... < it ≤ 2s. Without loss of generality, we may as-
sume that i1 = 0. For every 1 ≤ j ≤ t, let Cj be the cycle vvijvij+1...vij+1

v. Since the minimum
degree of G is at least four, every vertex in C has at least one neighbor in G−v−V (C), imply-
ing that Cj is non-separating. If ij−1 = ij + 1 for some j, then clearly Cj is a non-separating
triangle and hence C is a triangle by the minimality. So we may assume that ij+1 − ij ≥ 2,
for each j with 1 ≤ j ≤ t− 1, and (2s+ 1)− it ≥ 2. If t ≥ 3, then for some j the length of Cj

is odd and less than the length of C. But Cj is induced and non-separating, a contradiction
to the minimality of |V (C)|. So t ≤ 2. When t = 2, by the minimality of |V (C)|, the unique
even path in C from vi1 to vi2 has to be of length two. This completes the proof.

Theorem 5.2. Let G be a 2-connected graph containing a non-separating induced odd cycle.
If the minimum degree of G is at least k + 1, then G contains 2⌊k−1

2 ⌋ cycles with consecutive
lengths.

Proof. The theorem is obvious when k ≤ 2. So we may assume that k ≥ 3. By Lemma 5.1,
there exists a non-separating induced odd cycle C = v0v1...v2sv0 in G satisfying the conclusions
of Lemma 5.1. Throughout this proof, the subscripts will be taken in the additive group Z2s+1.

Claim 1: s ≥ 2 and hence C is not a triangle.
Proof of Claim 1. Suppose to the contrary that C is a non-separating triangle abca.

Let G′ = (G − c) − {ab}. Since G is 2-connected, (G′, a, b) is a 2-connected rooted graph
with minimum degree at least k. By Lemma 3.1, G′ contains a sequence of ⌊(k − 1)/2⌋ paths
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P1, ..., P⌊(k−1)/2⌋ from a to b satisfying the length condition. Then Pi ∪ ba and Pi ∪ bca for all
1 ≤ i ≤ ⌊(k − 1)/2⌋ are 2⌊(k − 1)/2⌋ cycles in G with consecutive lengths. ✷

So every non-cut-vertex v of G−V (C) has dG−V (C)(v) ≥ k− 1. Note that s is a generator
of the additive group Z2s+1. For each 0 ≤ i ≤ 2s, let v′i = vi+s and v′′i = vi+s+1. For any two
vertices vi, vj in C, denote C ′

i,j and C ′′
i,j to be the shorter and longer paths in C from vi to vj ,

respectively.

Claim 2: G− V (C) is not 2-connected.
Proof of Claim 2. Suppose to the contrary that G − V (C) is 2-connected. First assume
that every vertex of G− V (C) is adjacent in G to at most one vertex of C. Then every vertex
v ∈ V (G − C) has dG−V (C)(v) ≥ k. There exist distinct vertices x, y ∈ V (G − C) such that
xv0, yvs ∈ E(G). By Lemma 3.1, G−V (C) contains ⌊(k−1)/2⌋ paths Q1, ..., Q⌊(k−1)/2⌋ from x
to y with the length condition. Note that C ′

0,s and C ′′
0,s are two paths from v0 to vs of lengths

s, s+1, respectively. So v0x∪Qi∪yvs∪C
′
0,s and v0x∪Qi∪yvs∪∪C

′′
0,s for all 1 ≤ i ≤ ⌊(k−1)/2⌋

are 2⌊(k − 1)/2⌋ cycles in G with consecutive lengths.
Hence we may assume that there exists some u ∈ V (G − C) adjacent to two vertices of

C in G. Without loss of generality, let NG(u) ∩ V (C) = {v1, v2s}, and let w ∈ V (G − C)
such that wvs ∈ E(G). Since G − V (C) is 2-connected with minimum degree at least k − 1,
by Lemma 3.1, G − V (C) contains a sequence of ⌊(k − 2)/2⌋ paths R1, ..., R⌊(k−2)/2⌋ from u
to w with the length condition. Observe that C ′

1,s and C ′
s,2s are two paths of lengths s − 1

and s, respectively and internally disjoint from {v0, v1, v2s}. Thus, v1u ∪ Ri ∪ wvs ∪ C ′
1,s and

v2su∪Ri∪wvs∪C ′
s,2s for all 1 ≤ i ≤ ⌊(k−2)/2⌋ together with v1v0v2su∪R⌊(k−2)/2⌋∪wvs∪C ′

1,s

and v2sv0v1u ∪R⌊(k−2)/2⌋ ∪wvs ∪ C ′
s,2s give 2⌊k/2⌋ cycles in G with consecutive lengths. ✷

Let B be an end-block of G − V (C) and b the cut-vertex of G − V (C) contained in B.
Every vertex in B − b has degree at least k − 1 ≥ 2 in B, and so B is 2-connected.

Claim 3: There exists x ∈ V (B − b) such that NG(x) ∩ V (C) = {vj−1, vj+1} for some j.
Proof of Claim 3. Suppose not that every vertex in B − b is adjacent in G to at most one
vertex of C. Then every vertex v ∈ V (B − b) has dB(v) ≥ k. If there exist x ∈ V (B − b)
and y ∈ V (G − C)− V (B − b) such that vjx, v

′
jy ∈ E(G) for some j, then by Lemma 3.1, B

contains ⌊(k − 1)/2⌋ paths P1, ..., P⌊(k−1)/2⌋ from x to b with the length condition. Let P be
a path in G − V (C) − V (B − b) from b to y. Also note that C ′

j,j+s and C ′′
j,j+s are two paths

in C from vj to v′j of lengths s and s + 1, respectively. Then, vjx ∪ Pi ∪ P ∪ yv′j ∪ C ′
j,j+s

and vjx ∪ Pi ∪ P ∪ yv′j ∪ C ′′
j,j+s for all 1 ≤ i ≤ ⌊(k − 1)/2⌋ are 2⌊(k − 1)/2⌋ cycles in G

with consecutive lengths. Hence, we may assume that if vj is adjacent to V (B − b), then
NG(v

′
j)∩V (G−C) ⊆ V (B− b). There is some vertex of C adjacent in G to V (B− b), and s is

a generator of Z2s+1, so we derive that NG(C) ⊆ V (B− b). This implies that b is a cut-vertex
of G, but G is 2-connected, a contradiction. ✷

Claim 4: NG({v
′
j , v

′′
j }) ∩ V (G− C) ⊆ V (B − b).

Proof of Claim 4. Suppose not, by symmetry we may assume that v′jy ∈ E(G) for some
y ∈ V (G − C)− V (B − b). Since every vertex in B − b has degree at least k − 1, by Lemma
3.1, B contains ⌊(k− 2)/2⌋ paths Q1, ..., Q⌊(k−2)/2⌋ from x to b with the length condition. Let
Q be a fixed path in G− V (C)− V (B − b) from b to y. Note that C ′

j+1,j+s, C
′
j−1,j+s are two

paths in C from v′j to vj+1, vj−1 with lengths s− 1, s, respectively and internally disjoint from
{vj−1, vj , vj+1}. Then, vj+1x ∪ Qi ∪ Q ∪ yv′j ∪ C ′

j+1,j+s and vj−1x ∪ Qi ∪ Q ∪ yv′j ∪ C ′
j−1,j+s
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for all 1 ≤ i ≤ ⌊(k − 2)/2⌋, together with vj+1vjvj−1x ∪ Q⌊(k−2)/2⌋ ∪ Q ∪ yv′j ∪ C ′
j+1,j+s and

vj−1vjvj+1x∪Q⌊(k−2)/2⌋ ∪Q∪ yv′j ∪C ′
j−1,j+s, are 2⌊k/2⌋ cycles in G with consecutive lengths.

✷

Since dG−V (C)(v
′
j) ≥ k− 1 ≥ 2, there exists z ∈ V (B)−{b, x} adjacent to v′j . Every vertex

of B other than b has degree at least k − 1 in B. By Lemma 3.2, B has ⌊(k − 3)/2⌋ paths
R1, ..., R⌊(k−3)/2⌋ from x to z with the length condition. Then, vj+1x∪Ri ∪ zv′j ∪C ′

j+1,j+s and
vj−1x∪Ri∪ zv′j ∪C ′

j−1,j+s for all 1 ≤ i ≤ ⌊(k−3)/2⌋, together with vj+1vjvj−1x∪R⌊(k−3)/2⌋∪
zv′j ∪C ′

j+1,j+s and vj−1vjvj+1x ∪R⌊(k−3)/2⌋ ∪ zv′j ∪C ′
j−1,j+s, are ⌊(k − 1)/2⌋ cycles in G with

consecutive lengths. This completes the proof of Theorem 5.2.

Now we are ready to prove Theorems 1.4 and 1.5.

Theorem 1.4. If G is a 3-connected non-bipartite graph with minimum degree at least k+1,
then G contains 2⌊k−1

2 ⌋ cycles with consecutive lengths.

Proof. It was proved by several groups (see [6,34]) that every 3-connected non-bipartite graph
contains a non-separating induced odd cycle. This, together with Theorem 5.2, immediately
imply this theorem.

Theorem 1.5. If G is a 2-connected non-bipartite graph with minimum degree at least k+3,
then G contains k cycles with consecutive lengths or the length condition.

Proof. If G is 3-connected, then by Theorem 1.4, G contains 2⌊(k + 1)/2⌋ ≥ k cycles with
consecutive lengths. Otherwise G is 2-connected but not 3-connected, by Lemma 4.1, G
contains 2⌊(k + 2)/2⌋ − 1 ≥ k cycles with the length condition.

From this result, we can prove Theorem 1.10 promptly.

Theorem 1.10. Let k be a positive odd integer. If G is a 2-connected non-bipartite graph
with minimum degree at least k + 3, then G contains cycles of all lengths modulo k.

Proof. By Theorem 1.5, G contains k cycles with consecutive lengths or the length condition.
Since k is odd, in either case, the set of these cycle lengths intersect each of the residue classes
modulo k.

The following theorem will be used for proving Theorem 1.6.

Theorem 5.3. Let G be a 2-connected graph and v a vertex of G. If every vertex of G other
than v has degree at least k + 4, then G contains k cycles with consecutive lengths or with the
length condition.

Proof. Let G′ = G− {v}. So G′ has minimum degree at least k + 3. If G′ is bipartite, then
G′ contains k + 2 cycles with the length condition by Theorem 1.2. So we may assume that
G′ is non-bipartite.

If G′ is 2-connected, then by Theorem 1.5, G′ contains k cycles with consecutive lengths or
the length condition. So we may assume that G′ is not 2-connected. Note that the minimum
degree of G′ is at least k + 3, so every end-block of G′ is 2-connected.

Since G is 2-connected, G′ contains two end-blocks B1, B2 such that for each i ∈ {1, 2},
Bi − bi contains a vertex vi adjacent in G to v, where bi is the cut-vertex of G′ contained in
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Bi. By Lemma 3.1, for each i ∈ {1, 2}, Bi contains ⌊(k + 2)/2⌋ paths Pi,1, ..., Pi,⌊(k+2)/2⌋ from
bi to vi with the length condition. Let R be a path in G′ from b1 to b2 internally disjoint from
V (B1)∪V (B2). Then for 1 ≤ j, j′ ≤ ⌊(k+2)/2⌋, P1,j∪R∪P2,j′∪v2vv1 are 2⌊(k+2)/2⌋−1 ≥ k
cycles in G with the length condition.

Theorem 1.6. If G is a graph with minimum degree at least k + 4, then G contains k cycles
with consecutive lengths or the length condition.

Proof. Let B be an end-block of G and let b be the cut-vertex of G contained in B. Every
vertex of B other than b has minimum degree at least k + 4 and hence B is 2-connected. By
Theorem 5.3, B (and hence G) contains k cycles with consecutive lengths or with the length
condition.

It is straightforward to obtain Theorem 1.11 from Theorem 1.6.

Theorem 1.11. Let k be a positive odd integer. If G is a graph with minimum degree at least
k + 4, then G contains cycles of all lengths modulo k.

Proof. By Theorem 1.6, G contains k cycles with consecutive lengths or the length condition.
Since k is odd, in either case, the set of these cycle lengths intersect each of the residue classes
modulo k.

Lastly, we derive Theorem 1.13 from Theorem 5.2.

Theorem 1.13. For every graphs G, χ(G) ≤ c(G) + 4.

Proof. Suppose to the contrary that there exists a graph G with χ(G) ≥ c(G) + 5. Let G′ be
a χ(G)-critical subgraph of G. Note that G′ is 2-connected and has minimum degree at least
χ(G)−1 ≥ c(G)+4. A result of Krusenstjerna-Hafstrøm and Toft (see [26], Theorem 4) states
that every 4-critical graph contains a non-separating induced odd cycle, but in fact their proof
also works for k-critical graph for every k ≥ 4. (We direct interested readers to the original
proof in [26].) Thus, G′ also contains a non-separating induced odd cycle. By Theorem 5.2,

G′ contains 2⌊ c(G)+2
2 ⌋ ≥ c(G) + 1 consecutive cycles. However, every cycle in G′ is a cycle in

G′, so c(G) ≥ c(G′) ≥ c(G) + 1, a contradiction. This completes the proof.

6 Concluding remarks

In this paper, we have obtained several tight or nearly tight results on the relation between
cycle lengths and minimum degree. It will be interesting if one can close the gap between our
results and the best possible upper bounds, such as in Theorems 1.4 and 1.5. A good starting
point may be the following strengthening of Theorem 1.3.

Conjecture 6.1. If G is a 2-connected non-bipartite graph with minimum degree at least k+1,
then G contains ⌈k/2⌉ cycles with consecutive odd lengths.

If it is true, then one can prove χ(G) ≤ 2co(G) + 2 as in Theorem 1.12.
In Theorem 1.6, we prove that every graph G with δ(G) ≥ k + 4 contains k cycles with

consecutive lengths or the length condition. The following examples show that the bound
δ(G) ≥ k+4 is tight up to the constant term: the complete graph Kk+2 has precisely k cycles
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of consecutive lengths 3, 4, ..., k + 2, while for every n ≥ k + 1 the complete bipartite graph
Kk+1,n has precisely k cycles of consecutive even lengths 4, 6, .., 2k + 2. All such graphs have
minimum degree k + 1, and thus we conjecture that δ(G) ≥ k + 1 is optimal.

Conjecture 6.2. Every graph with minimum degree at least k + 1 contains k cycles with
consecutive lengths or the length condition.

If true, this would imply both Conjectures 1.7 and 1.8 when k is odd, and thus, together with
Theorems 1.9, imply these conjectures in full generality.

Our results show that if a graph G has δ(G) ≥ k + 4 (and satisfies some necessary condi-
tions), then G contains cycles of all lengths modulo k. This is tight up to the constant term.
However, for fixed integer m, we know very little about the least function f(m,k) such that
every graph G with δ(G) ≥ f(m,k) contains a cycle of length m modulo k. (If k is even and
m is odd, then one has to restrict to 2-connected non-bipartite graphs G here.) A conjecture
of Dean (see [10]) considered the case when m = 0, which asserted that every k-connected
graph contains a cycle of length 0 modulo k. Note that this (if true) is best possible for odd
k, as for every n ≥ k − 1, Kk−1,n is (k − 1)-connected but has no cycles of length 0 modulo
k. Dean’s conjecture was confirmed for k = 3 in [9] and k = 4 in [10]. Another interesting
special case is m = 3 (for the sake of convenience, let k be odd). So f(3, k) becomes the least
function such that every triangle-free graph G with minimum degree f(3, k) contains a cycle
of length 3 modulo k. We speculate that f(3, k) = o(k). This may be related to the recent
result of [25].

Despite much research has been done, the distribution of cycle lengths in graphs with large
minimum degree is still mysterious and unclear. We conclude this paper by mentioning a
conjecture of Erdő and Gyárfás [16]: every graph with minimum degree at least three contains
a cycle of length a power of two.
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[28] P. Mihók and I. Schiermeyer, Cycle lengths and chromatic number of graphs, Discrete
Math. 286 (2004), 147–149.

[29] V. Nikiforov and R. Schelp, Paths and cycles in graph of large minimal degree, J. Graph
Theory 47 (2004), 39–52.

[30] V. Nikiforov and R. Schelp, Cycle lengths in graphs with large minimum degree, J. Graph
Theory 52 (2006), 157–170.
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